Maternal high-fat diet consumption modulates hepatic lipid metabolism and microRNA-122 (miR-122) and microRNA-370 (miR-370) expression in offspring.
نویسندگان
چکیده
Maternal consumption of a high-fat diet (HFD) during pregnancy and lactation is closely related to hepatic lipid accumulation, insulin resistance and increased serum cytokine levels in offspring and into their adulthood. MicroRNA (miRNA) have been implicated in cholesterol biosynthesis and fatty acid metabolism. We evaluated the modulation of hepatic fatty acid synthesis (de novo), β-oxidation pathways, and miRNA-122 (miR-122) and miRNA-370 (miR-370) expression in recently weaned offspring (day 28) of mouse dams fed a HFD (HFD-O) or a standard chow (SC-O) during pregnancy and lactation. Compared with SC-O mice, HFD-O mice weighed more, had a larger adipose tissue mass and were more intolerant to glucose and insulin (P< 0·05). HFD-O mice also presented more levels of serum cholesterol, TAG, NEFA and hepatic IκB kinase and c-Jun N-terminal kinase phosphorylation compared with SC-O mice (P< 0·05). Protein levels of fatty acid synthase, acetyl-CoA carboxylase and 3-hydroxy-3-methylglutaryl-CoA reductase were similar in HFD-O and SC-O mice, whereas expression levels of SCD1 mRNA and protein were more abundant in HFD-O mice than in SC-O mice (P< 0·05). Interestingly, mRNA expression levels of the β-oxidation-related genes ACADVL and CPT1 were decreased in HFD-O mice (P< 0·05). Furthermore, the expression of miR-122 was reduced but that of miR-370 was increased in HFD-O mice compared with that in SC-O mice (P< 0·05). Changes in hepatic lipid metabolism were accompanied by increased mRNA content of AGPAT1 and TAG deposition in HFD-O mice (P< 0·05). Taken together, the present results strongly suggest that maternal consumption of a HFD affects the early lipid metabolism of offspring by modulating the expression of hepatic β-oxidation-related genes and miRNA that can contribute to metabolic disturbances in adult life.
منابع مشابه
Lipid overload during gestation and lactation can independently alter lipid homeostasis in offspring and promote metabolic impairment after new challenge to high-fat diet
BACKGROUND Nutritional status in early life is critically involved in the metabolic phenotype of offspring. However the changes triggered by maternal consumption of high-fat diet (HFD) in pre- or postnatal period should be better understood. Here we evaluated whether maternal HFD consumption during gestation and lactation could differently affect liver miR-122 and miR-370 expression leading to ...
متن کاملIsocaloric Pair-Fed High-Carbohydrate Diet Induced More Hepatic Steatosis and Inflammation than High-Fat Diet Mediated by miR-34a/SIRT1 Axis in Mice
To investigate the different effects of isocaloric high-fat diet (HFD) and high-carbohydrate diet (HCD) on hepatic steatosis and the underlying mechanisms, especially the role of microRNA-34a/silent information regulator T1 (SIRT1) axis, C57BL/6J mice (n = 12/group) were isocaloric pair-fed with Lieber-DeCarli liquid diet containing either high fat (HFLD) or high carbohydrate (HCLD) for 16 week...
متن کاملMicroRNA-122 Modulates the Rhythmic Expression Profile of the Circadian Deadenylase Nocturnin in Mouse Liver
Nocturnin is a circadian clock-regulated deadenylase thought to control mRNA expression post-transcriptionally through poly(A) tail removal. The expression of Nocturnin is robustly rhythmic in liver at both the mRNA and protein levels, and mice lacking Nocturnin are resistant to diet-induced obesity and hepatic steatosis. Here we report that Nocturnin expression is regulated by microRNA-122 (mi...
متن کاملThe protective effect of bone marrow-derived mesenchymal stem cells in liver ischemia/reperfusion injury via down-regulation of miR-370
Objective(s): Liver transplantation is the most important therapy for end-stage liver disease and ischemia reperfusion (I/R) injury is indeed a risk factor for hepatic failure after grafting. The role of miRNAs in I/R is not completely understood. The aim of this study was to investigate the potential protective role of the mesenchymal stem cells (MSCs) and ischemic pr...
متن کاملMaternal Low-Protein Diet Modulates Glucose Metabolism and Hepatic MicroRNAs Expression in the Early Life of Offspring †
Emerging studies revealed that maternal protein restriction was associated with increased risk of type 2 diabetes mellitus in adulthood. However, the mechanisms of its effects on offspring, especially during early life of offspring, are poorly understood. Here, it is hypothesized that impaired metabolic health in offspring from maternal low-protein diet (LPD) is associated with perturbed miRNAs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The British journal of nutrition
دوره 111 12 شماره
صفحات -
تاریخ انتشار 2014